TRANSLATION DRIFT BENCHMARK

Reference No / Version	RAL-SI-2020-B19-0838_3-V1.0
	For the latest versions of the benchmark, please refer to http://newdexterity.org/benchmarking/
Authors	Geng Gao ¹ , Gal Gorjup ¹ , Ruobing Yu ² , Patrick Jarvis ² , and Minas Liarokapis ¹
Institution	¹ University of Auckland, ² Humanoid Artificial Intelligence
Contact Information	ggao102@aucklanduni.ac.nz, ggor290@aucklanduni.ac.nz, ruobingy@aidatainnovations.com, patrickj@aidatainnovations.com, m.liarokapis@auckland.ac.nz
Adopted Protocol	Any protocol that involves periodic object translation (RAL-SI-2020-P19-0838_1-V1.0, RAL-SI-2020-P19-0838_3-V1.0, RAL-SI-2020-P19-0838-4-V1.0).
Scoring	Assessment is based on the average drift vector $\bar{\mathbf{d}}$ obtained through the following steps. For each recorded periodic manipulation motion:
	 Isolate motion end points. Compute offset vectors between subsequent endpoints. Compute the mean offset (drift) vector d of the above offset vectors. Compute the length of the mean drift vector d ².
	The resulting length corresponds to an average drift of a specific manipulation motion. If different objects are used, the steps are repeated for each instance.
Details of Setup	To assist with data processing and drift vector computation, code samples are provided.
Results to Submit	For each sensorized object and manipulation motion: • Sensorized object type, size, and surface. • Sensorized object mass and center of mass (internal weight configuration). • Assessed hand model, aperture and control details.
	 Computed drift vector lengths a ². Plots of recorded point clouds with highlighted end points. Comments on obtained results with respect to the hand model and control.